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Ergodicity-breaking transition and high-frequency response in a simple free-energy landscape
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~Received 29 January 1999!

We present a simple dynamical model described by a Langevin equation in a piecewise parabolic free-
energy landscape, modulated by a temperature-dependent overall curvature. The zero-curvature point marks a
transition to a phase with broken ergodicity. The frequency-dependent response near this transition is reminis-
cent of observations near the glass transition.@S1063-651X~99!51007-6#

PACS number~s!: 64.70.Pf, 64.60.My, 82.20.Mj
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Supercooled liquids can undergo an ergodicity-break
transition at which the time required to adequately sam
the allowed phase space becomes longer than observ
times @1,2# and the liquid freezes into a glassy state@1#.
Recent experiments indicate that the approach to this g
transition has some universal features@3# when viewed in
terms of the frequency-dependent response of the system
both supercooled liquids@3# and spin glasses@4#, the ap-
proach to the glass transition is characterized by two gen
features, a frequency-independent behavior at high frequ
cies and the presence of three distinct regimes in the re
ation spectrum. These features are different from those
served near a critical point where the high-frequen
response is thought to be uninteresting@5#. Existing theories
of the glass transition@1,6# offer no satisfactory explanatio
of the unusual frequency-dependent response. In this R
Communication, we present a simple, dynamical mo
which is able to describe the frequency-dependent resp
observed near the glass transition.

Time-dependent fluctuations in a system approachin
critical point are described, within the spirit of Landa
theory, by a Langevin equation for the order parameter@5#.
Adopting a similar framework for describing the fluctuatio
near a glass transition, we study the Langevin dynamics
collective variable,f, relaxing in a multivalleyed free-
energy landscape. This collective variable is envisioned to
one of the slow variables in a viscoelastic liquid, such a
density fluctuation mode@6# or a component of the averag
strain field @7#. The multivalleyed free-energy surface
modulated by a temperature-dependent overall curvat
The introduction of this curvature was inspired by simu
tions of a frustrated spin system in which the role off is
played by an elastic strain field, and the curvature arises f
a coupling between the frustrated spin variables and
strain field @8#. The vanishing of the overall curvature
identified in our model with the glass transition.

A schematic picture of the free energy is shown in Fig.
All valleys ~including the megavalley! in the free-energy sur
face are assumed to be parabolic. Each valley is paramet
by its curvaturer n , width Dn , position of the centerfn

0 and
position of the minimumCn . Consequently, each valley i
characterized not only by the time it takes to escape from
but also by its internal relaxation time. The set of$Cn% is
fixed by the requirement that the free energy,F(f), is a
continuous function. To simplify the picture even further, w
set allDn5D, which then automatically fixesfn

05nD. The
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curvatures of the valleys are taken to be independent ran
variables picked from a distributionP(r ,n). This defines a
free-energy function

F~f!5
1

2
Rf21

1

2 (
n52`

`

mn$r n~f2fn
0!21Cn%. ~1!

Here$mn% is the set of functions specifying the range of ea
subwell, i.e.,mn51 if fn

02D/2<f<fn
01D/2 and zero oth-

erwise. The curvature of the megavalley is denoted byR.
The dynamics is modeled by relaxation in this free-ene

surface and is defined by the Langevin equation

]f

]t
52Rf2( mnr n~f2fn

0!1h~ t !, ~2!

whereh is a Gaussian noise with zero average and varia
^h(t)h(t8)&5Gd(t2t8). The temperature scale is set byb
5D2/G. In the absence of any subvalley structure,~all r n
50), Eq. ~2! results in a Debye relaxation spectrum with

FIG. 1. Free-energy landscape for two different values ofR with
a fixed distribution of$r n%. The inset shows how the overall curva
ture modifies the heights of the barriers between the valleys.
R21 ©1999 The American Physical Society
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relaxation time of 1/R. If R is taken to be of the form as
sumed in Landau theory, such that it vanishes linearly at
critical temperature, then Eq.~2! provides a mean-field de
scription of critical slowing down@5#. The effect of the sub-
valley structure on the relaxation spectrum, and the na
and existence of phase transitions in the two-dimensio
space spanned byR andb are the subjects of this paper.

The dynamics of systems approaching the glass trans
has been modeled previously by random walks in the e
ronment of traps@9#. What distinguishes our model is th
presence of an overall curvature modulating the landsc
and the description of the dynamicswithin the valleys. As
shown below, both these features have nontrivial effects
the relaxation spectrum.

Specific features of the distributionP(r ,n) affect the de-
tailed nature of the response. The assumption that the cu
ture of each valley is uncorrelated with its position,P(r ,n)
;P(r ) is the easiest to implement and is the scenario
we examine in detail. A natural candidate forP(r ) is an
exponential distributionP(r )5e2b0r /b0, observed in many
spin-glass models@9#. The frustrated spin model that mot
vated the introduction of the overall curvature also indica
an exponential distribution of barrier heights@8#.

The occurrence of an ergodicity-breaking transition in o
model can be demonstrated explicitly@11#. The equilibrium
probability distribution, predicted by Eq. ~2!, is
exp@2bF(f)# as long as the integral of this function overf
remains finite@10#. A simple calculation@11# shows that this
integral diverges as 1/(b02b)AR. As R→0, an equilibrium
distribution can no longer be defined@10# and correlation
functions become power law in nature with no characteri
time scale. The pointR50, b5b0 is special in that the
power-law correlations no longer decay to zero and the s
tem falls out of equilibrium. The approach to this spec
point, where ergodicity is broken, can be studied by ana
ing the equilibrium correlation function,C(t)5^f(0)f(t)&,
and the response function associated with it through the fl
tuation dissipation relation@5#. In the absence of the overa
curvature, the 1/AR factor gets replaced by the system siz
the probabilitydensitydiverges asb→b0, and the correla-
tion functions are always characterized by power laws@9#.
The line with R50 is, therefore, special and in the prese
work, we are mainly interested in studying theR50, b
5b0 point as it is approached along a generic line in
(R,b) space.

The dynamical processes contributing to the correlat
function can be roughly subdivided into the internal rela
ation within each subvalley and the activated motion
tween subvalleys, modulated by the presence of the ove
curvatureR. The correlation functions along theR50 line
can be calculated by using the well known mapping of
Langevin equation to a quantum mechanical model@10# and
leads to@11#,

C~ t !5(
n

ebr nS e2r nt

r n
1e2(t/b)e2br nD . ~3!

Physically, the first term within the parentheses represe
the superposition of independent relaxations within each
ley, while the second term represents activated motion.
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Generalization of these results to nonzeroR involves
evaluating the eigenvalue spectrum of the quantum Ham
tonian as modified by the overall curvature. Taking the c
vature into account perturbatively leads to the following ge
eralization ofC(t):

Ctrap~ t !5(
n

u~DFn!e2bFn
minS e2Rnt

Rn
1e2(t/b)e2bDFnD .

~4!

Here Rn5r n1R, Fn
min5n2R2r n , and theu-function ex-

cludes the valleys for which the effective free-energy barr
DFn5(Rn/2)(1/22nR/Rn)2, becomes zero due to the pre
ence of the overall curvature. The contribution of these ze
barrier valleys cannot be calculated perturbatively. The ti
evolution of f involves hopping over barriers, relaxatio
within the subvalleys, and, in the ‘‘free’’ regions, relaxatio
in response to only the overall curvature. Since the free
gion is expected to be small in the vicinity ofR50, we have
simplified this complex relaxation process by including t
free relaxation within a mean-field type approximation th
neglects the positional relationship between the free vall
and the valleys with barriers. The total correlation functi
then reduces to a sum ofCtrap andCf ree with

Cf ree~ t !5(
n

u~2DFn!
e2bn2R2Rt

R
. ~5!

One of the most interesting aspects of our model is
high-frequency response. The origin of this can be und
stood from an analysis of the results along theR50 line @cf.
Eq.~3!#. The hopping term inC(t) is then identical to the one
analyzed in@9#, and in frequency domain, leads to an imag
nary part of the susceptibility,x9(v)5vC̄(v), of the form
v (b02b)/b at low frequencies and decaying as 1/v at high
frequencies. There is, however, a new feature that ar
from the internal dynamics and drastically changes the hi
frequency behavior. The internal relaxation part ofC̄(v) is
given by

C̄int~v!5E
r*

`

dr
e2(b02b)r

v21r 2
. ~6!

The contribution of this term tox9(v) behaves as@p/2
2arctan(r * /v)# @12# for v<1/(b2b0); a function that de-
cays extremely slowly with frequency asb→b0. The total
frequency-dependent response, therefore, behaves
v (b02b)/b for v→0 and is a slowly decaying function a
high frequencies.

The overall curvature changes the effective barri
heights and the effective distribution ofr. The parameter
space of our model is spanned byR andb. In order to sim-
plify the analysis, we study the response along the family
lines defined bya(b02b)5b0bR, with a51 for most of
the calculations. The relaxation spectrum, obtained fr
Ctrap(t), is given by
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C̄trap~v!5(
n

e2bn2RE
nR

`

dre2(b02b)r

3S 1

v21r 21
e2bDFn/b

v21e22bDFn/b2D . ~7!

This expression in not analytically tractable and the comp
frequency-dependent response can be obtained only fro
numerical calculation. The basic features can, however
understood from a simplified analysis. For smallR, the pri-
mary effect of the overall curvature is to introduce an up
and a lower cutoff to the distributionP(r ). Thee2bn2R term
of Eq. ~7! makes the system finite with an ‘‘effective’’ num
ber of wells.1/AR, which in turn leads to an upper cuto
of r max52 logR @11#. The lower cutoff arises from the
elimination of the zero-barrier valleys that is the source
the lower limit on the integral in Eq.~7!. The primary effect
of the upper cutoff is to alter the exponent of the lo
frequency power law from (b02b)/b to one which goes to
zero more rapidly withR. The high-frequency response
affected by the overall width of the distribution ofr which
increases asR→0 and leads to an essentially frequenc
independent response forAR!v!1/R. A less significant ef-
fect of R is to alter the exponent of the power law in th
frequency range.

The results from a complete numerical analysis of Eq.~7!
are shown in Fig. 2. It is clear from these results that ther

FIG. 2. Imaginary part of the susceptibility,x9(v)

5vC̄trap(v) @cf. Eq. ~7!# for different values ofR. The peak inten-
sities have been matched. Frequencies have been normalized tv0,
a microscopic frequency scale determined by the parameters o
model. The inset shows the full relaxation spectra,including the
contribution from the ‘‘free’’ valleys forR50.1, 0.05 and 0.01. The
long-dashed lines show the high-frequency power law extending
to v.a/R. The parametera51 in the main figure buta5100 in
the inset.
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a slowly decaying high-frequency response. The expon
characterizing this high-frequency power law is a function
R and approaches zero asR→0. It is also evident that the
response is characterized by a low-frequency power law w
the exponent approaching zero asR→0.

The free part of the relaxation spectrum is given by

C̄f ree~v!5
1

R21v2 (
n

e2bn2RE
0

nR

dre2b0r , ~8!

and leads to a Debye spectrum with peak atv5R. There is
a tradeoff between the hopping dynamics and free relaxat
with the hopping contribution decreasing asR increases, and
more valleys become effectively ‘‘free.’’ The inset of Fig.
demonstrates the effect of the free part with a shift in pe
frequency as well as the appearance of an intermediate
gime.

Three distinct regimes of the response emerge: a l
frequency power law, associated with hopping between
ferent valleys; a Debye-like peak coming from barrierle
relaxation; and a high-frequency power-law decay result
from the superposition of many single-relaxation-time p
cesses. The high-frequency power law is intimately relate
the fact that the system explores more valleys as the cu
ture decreases. The low-frequency power law is contro
by the effective distribution of barriers, which also depen
on R. The curvature, therefore, controls both the high- a
low-frequency behavior of the dynamical response. This p
ture of the dynamical response is very similar to the exp
mentally observed response in spin glasses@4#, with the re-
sponse flattening out at both high- and low-frequency e
and the peak moving to zero, but slower than exponentia

In supercooled liquids, only the high-frequency respon
flattens out, and the peak shifts towards zero according
Vogel-Fulcher law@1,3#. In our model, this difference could
be ascribed to a difference in the nature of correlations in
distributionP(r ,n). In a structural glass, the crystalline sta
is the absolute global free-energy minimum. The valleys
our model correspond to metastable states and the meg
ley represents the states accessible in the supercooled p
with the crystalline minimum lying outside this region. Th
suggests that the depth of a valley and its position are co
lated, with the deeper valleys situated further away from
minimum of the megavalley. A correlation of this form i
P(r ,n) alters theR dependence of the upper cutoff in th
distribution of barrier heights and leads to a maximum
cape timetesc;exp(1/Ra). Herea.0 is the exponent of a
power law describing the correlation between the depth
the position of valleys. For times longer thattesc, there is
only barrier-free motion in our model. At frequencies low
than vc5(tesc)

21, we, therefore, predict thatx9(v);v,
with no flattening out of the low-frequency response. T
upper cutoff does not have a large influence on the respo
arising from the internal dynamics of the valleys. The hig
frequency cutoff is still'1/R, as seen from Eq.~6!.

The original motivation for constructing the dynamic
model came from observations in a nonrandomly frustra
spin system whose phenomenology is remarkably simila
structural glasses@8#. Simulations of this system indicated
free-energy surface with an overall curvature, and the v
ishing of this curvature was accompanied by the appeara
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of broken ergodicity and ‘‘aging’’@8#. The dynamics was
effectively one dimensional, with the shear strain playing
role of f. This frustrated spin system, can, therefore,
viewed as a microscopic realization of the dynamical mo
presented here, and could provide the connection betw
our simple toy model and the dynamics of real glasses.

In conclusion, we have demonstrated that the basic
tures of the frequency-dependent response near a glass
sition can be understood on the basis of a multivalleyed fr
energy surface with an overall curvature, which goes to z
at the glass transition. This is reminiscent of models wh
the glass transition is associated with an instability@13#. In
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our model, the spectrum crosses over from being pure De
at large curvatures to one with three distinct regimes. T
asymptotic, high-frequency power law is characterized by
exponent approaching zero as the curvature approaches
Our analysis also suggests that the relaxation spectra of
glasses and structural glasses can be described by the
underlying model with different correlations in the distrib
tion of valleys.
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