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Ergodicity-breaking transition and high-frequency response in a simple free-energy landscape
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We present a simple dynamical model described by a Langevin equation in a piecewise parabolic free-
energy landscape, modulated by a temperature-dependent overall curvature. The zero-curvature point marks a
transition to a phase with broken ergodicity. The frequency-dependent response near this transition is reminis-
cent of observations near the glass transit[@1.063-651X99)51007-4

PACS numbes): 64.70.Pf, 64.60.My, 82.20.Mj

Supercooled liquids can undergo an ergodicity-breakingurvatures of the valleys are taken to be independent random
transition at which the time required to adequately samplevariables picked from a distributioR(r,n). This defines a
the allowed phase space becomes longer than observatifree-energy function
times [1,2] and the liquid freezes into a glassy stdfd. .

Recent experiments indicate that the approach to this glass 1 .1 02

transition has some universal featuf@ when viewed in F(¢)= §R¢ + 2 n;w pniln($=¢n)*+Cal. (1)
terms of the frequency-dependent response of the system. In

both supercooled liquid§3] and spin glassep4], the ap-  Here{u,!} is the set of functions specifying the range of each
proach to the glass transition is characterized by two generigsubwell, i.e.,u,=1 if ¢2—A/2§ p=< ¢2+A/2 and zero oth-
features, a frequency-independent behavior at high frequerrwise. The curvature of the megavalley is denotedRby

cies and the presence of three distinct regimes in the relax- The dynamics is modeled by relaxation in this free-energy
ation spectrum. These features are different from those obsyrface and is defined by the Langevin equation

served near a critical point where the high-frequency

response is thought to be uninterestjbg Existing theories ¢

of the glass transitiofl,6] offer no satisfactory explanation ot R—2 pnl (b= b0)+ (), @

of the unusual frequency-dependent response. In this Rapid

Communication, we present a simple, dynamical modelvhere is a Gaussian noise with zero average and variance
which is able to describe the frequency-dependent respongey(t) n(t'))=T5(t—t'). The temperature scale is set By
observed near the glass transition. =AZ?/T. In the absence of any subvalley structua) r,

Time-dependent fluctuations in a system approaching & 0), Eq.(2) results in a Debye relaxation spectrum with a
critical point are described, within the spirit of Landau
theory, by a Langevin equation for the order paramgiér
Adopting a similar framework for describing the fluctuations
near a glass transition, we study the Langevin dynamics of a
collective variable, ¢, relaxing in a multivalleyed free-
energy landscape. This collective variable is envisioned to be
one of the slow variables in a viscoelastic liquid, such as a
density fluctuation modg6] or a component of the average
strain field [7]. The multivalleyed free-energy surface is
modulated by a temperature-dependent overall curvature.
The introduction of this curvature was inspired by simula-
tions of a frustrated spin system in which the role¢bfis
played by an elastic strain field, and the curvature arises from
a coupling between the frustrated spin variables and the
strain field [8]. The vanishing of the overall curvature is
identified in our model with the glass transition.

A schematic picture of the free energy is shown in Fig. 1.
All valleys (including the megavalleyin the free-energy sur-
face are assumed to be parabolic. Each valley is parametrizec
by its curvaturer,, width A, position of the cente¢ﬂ and
position of the minimumC,. Consequently, each valley is
characterized not only by the time it takes to escape from it ¢
but also by its internal relaxation time. The set{@,} is
fixed by the requirement that the free ener@y(¢), is a FIG. 1. Free-energy landscape for two different valueR wfith
continuous function. To simplify the picture even further, we a fixed distribution ofr,}. The inset shows how the overall curva-
set allA,=A, which then automatically fixe$2= nA. The ture modifies the heights of the barriers between the valleys.

F(9)
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relaxation time of 1IR. If R is taken to be of the form as- Generalization of these results to nonzdRoinvolves

sumed in Landau theory, such that it vanishes linearly at thgvaluating the eigenvalue spectrum of the quantum Hamil-
critical temperature, then Eq2) provides a mean-field de- tonian as modified by the ovgrall curvature. Taking .the cur-
scription of critical slowing dowri5]. The effect of the sub- vatu_re |_nt0 account perturbatively leads to the following gen-
valley structure on the relaxation spectrum, and the naturralization ofC(t):
and existence of phase transitions in the two-dimensional
space spanned dy and B are the subjects of this paper. min/ @ Rat
The dynamics of systems approaching the glass transition C'"2P(t)= > 6(AF,)e FFa
has been modeled previously by random walks in the envi- n
ronment of trapd9]. What distinguishes our model is the )
presence of an overall curvature modulating the landscape
and the description of the dynamiesthin the valleys. As  Here R,=r,+R, F™"=n?R—r, and the#-function ex-
shown below, both these features have nontrivial effects ogludes the valleys for which the effective free-energy barrier,
the relaxation spectrum. AF,=(R,/2)(1/2-nR/R,)?, becomes zero due to the pres-
Specific features of the distributidd(r,n) affect the de- ence of the overall curvature. The contribution of these zero-
tailed nature of the response. The assumption that the curv@arrier valleys cannot be calculated perturbatively. The time
ture of each valley is uncorrelated with its positié(r,n)  evolution of ¢ involves hopping over barriers, relaxation
~P(r) is the easiest to implement and is the scenario thalithin the subvalleys, and, in the “free” regions, relaxation
we examine in detail. A natural candidate fB(r) is an in response to only the overall curvature. Since the free re-
exponential distributiorP(r)=e#o"/3,, observed in many gion is expected to be small in the vicinity B&=0, we have
spin-glass model§9]. The frustrated spin model that moti- simplified this complex relaxation process by including the
vated the introduction of the overall curvature also indicatedree relaxation within a mean-field type approximation that
an exponential distribution of barrier height. neglects the positional relationship between the free valleys
The occurrence of an ergodicity-breaking transition in ourand the valleys with barriers. The total correlation function
model can be demonstrated expliciftil]. The equilibrium  then reduces to a sum @ft"2P and Cfee with
probability distribution, predicted by Eq.(2), is
ex —BF(¢)] as long as the integral of this function ovér
remains finitg 10]. A simple calculatiorf11] shows that this
integral diverges as 18,— 8) VR. As R—0, an equilibrium
distribution can no longer be defindd0] and correlation

functions become power law in nature with no characteristic ) ) )
time scale. The poinR=0, 8=, is special in that the One of the most interesting aspects of our model is the

power-law correlations no longer decay to zero and the sydligh-frequency response. The origin of this can be under-
tem falls out of equilibrium. The approach to this specialStood from an analysis of the results along R0 line [cf.
point, where ergodicity is broken, can be studied by analyzEd{(3)]. The hopping term ii€(t) is then identical to the one
ing the equilibrium correlation functiorG(t) =( $(0) (1)), analyzed in9], and in frequency domam_, leads to an imagi-
and the response function associated with it through the flugiary part of the susceptibilityy”(w) = wC(w), of the form
tuation dissipation relatiofg]. In the absence of the overall @®o~ A% at low frequencies and decaying asolat high
curvature, the jJﬁ factor gets rep|aced by the System size,frequencies. There iS, however, a new feature that arises
the probabilitydensitydiverges as3— B,, and the correla- from the internal dynamics and drastically changEs the high-
tion functions are always characterized by power 1@  frequency behavior. The internal relaxation partGfiw) is
The line withR=0 is, therefore, special and in the presentgiven by
work, we are mainly interested in studying tiR=0, B
= Bo point as it is approached along a generic line in the o
o (Bo=B)r

(R,B) space. gm(w):f ars _ ®)

The dynamical processes contributing to the correlation r w2+r?
function can be roughly subdivided into the internal relax-
ation within each subvalley and the activated motion be- o .
tween subvalleys, modulated by the presence of the overallne contribution of this term to("(w) behaves agw/2
curvatureR. The correlation functions along tHe=0 line ~ —arctan¢*/w)] [12] for o<1/(8— Bo); a function that de-
can be calculated by using the well known mapping of thec@ys extremely slowly with frequency g— B,. The total
Langevin equation to a quantum mechanical mdde] and frequency-dependent response, therefore, behaves as

+e-WAe )

ef/aanth
cf'ee(t)=; 6(—AF)—— (5)

leads to[11], wPo=BVE for w—0 and is a slowly decaying function at
high frequencies.
et The overall curvature changes the effective barriers
C(t)=, efn +e-WBe | (3)  heights and the effective distribution of The parameter
n In space of our model is spanned Byand 3. In order to sim-

plify the analysis, we study the response along the family of
Physically, the first term within the parentheses representines defined bya(B8,— B8) = B8R, with a=1 for most of
the superposition of independent relaxations within each valthe calculations. The relaxation spectrum, obtained from
ley, while the second term represents activated motion. ~ C'"@P(t), is given by
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a slowly decaying high-frequency response. The exponent
characterizing this high-frequency power law is a function of
R and approaches zero &—0. It is also evident that the
response is characterized by a low-frequency power law with
the exponent approaching zeroRs-0.

The free part of the relaxation spectrum is given by

ciree(w) = _* > e AR " dre b )
R2+w2 n 0 '

and leads to a Debye spectrum with pealwatR. There is
a tradeoff between the hopping dynamics and free relaxation,
with the hopping contribution decreasingRéncreases, and
more valleys become effectively “free.” The inset of Fig. 2
demonstrates the effect of the free part with a shift in peak
frequency as well as the appearance of an intermediate re-
gime.
Three distinct regimes of the response emerge: a low-
frequency power law, associated with hopping between dif-
. : . ferent valleys; a Debye-like peak coming from barrierless
-5 -3 -1 1 3 relaxation; and a high-frequency power-law decay resulting
ln((*)/mo) from the superposition of many single-relaxation-time pro-
. G, cesses. The high-frequency power law is intimately related to
FIG. 2. Imaginary pa.rt of the susceptibility,x ,(“’) the fact that th?a sysﬁem e>2/plloores more valleys asy the curva-
=wC"*(v) [cf. Eq.(7)] for different values oR. The peakinten- 1o decreases. The low-frequency power law is controlled
sities have been matched. Frequencies have been normaliagd 10 o, the effective distribution of barriers, which also depends
a micrOSCOpi.C frequency scale determine?d by the parameters of t R. The curvature, therefore, contro,ls both the high- and
mOde." T.he Inset Sh?WS f,he full relaxa_t'on spectrajuding the low-frequency behavior of the dynamical response. This pic-
contribution from the “free” valleys foR=0.1, 0.05 and 0.01. The . f L .
re of the dynamical response is very similar to the experi-

_ . , u
long-dashed lines show the high-frequency power law extending uén - . .
to w=a/R. The parametea=1 in the main figure bua=100 in entally Observed response in _Spm glagggswith the re-
sponse flattening out at both high- and low-frequency ends

Iny’’ (arb. units)

the inset. and the peak moving to zero, but slower than exponentially.
In supercooled liquids, only the high-frequency response
Etrap(w)zz e—ﬁanfw dre~ (Bo=Ar flattens out, and the peak shifts towards zero according to a

n nR Vogel-Fulcher law[1,3]. In our model, this difference could

be ascribed to a difference in the nature of correlations in the

1 e FAFn/p distributionP(r,n). In a structural glass, the crystalline state

w2+ r2+ w?+ e 2BAFn g2 @) is the absolute global free-energy minimum. The valleys of
our model correspond to metastable states and the megaval-

) o . ley represents the states accessible in the supercooled phase,
This expression in not analytically tractable and the completyith the crystalline minimum lying outside this region. This
frequency-dependent response can be obtained only from,gqests that the depth of a valley and its position are corre-
numerical calculation. The basic features can, however, bgyeq, with the deeper valleys situated further away from the
understood from a simplified analysis. For smallthe pri-  minimum of the megavalley. A correlation of this form in
mary effect of the overall c-:ur\./atu.re is to |ntrocjuc§ an uppeip(r n) alters theR dependence of the upper cutoff in the
and a lower cutoff to the distributioR(r). Thee #"Rterm  distribution of barrier heights and leads to a maximum es-
of Eq. (7) makes the system finite with an “effective” num- cape timet,.~exp(1R%). Here «>0 is the exponent of a
ber of wells=1/\/R, which in turn leads to an upper cutoff power law describing the correlation between the depth and
of rmax=—10gR [11]. The lower cutoff arises from the the position of valleys. For times longer that,, there is
elimination of the zero-barrier valleys that is the source ofonly barrier-free motion in our model. At frequencies lower
the lower limit on the integral in Eq7). The primary effect than w.=(tesd ~*, We, therefore, predict thay”(»)~ o,
of the upper cutoff is to alter the exponent of the low-with no flattening out of the low-frequency response. The
frequency power law from@&,— B)/8 to one which goes to upper cutoff does not have a large influence on the response
zero more rapidly withR. The high-frequency response is arising from the internal dynamics of the valleys. The high-
affected by the overall width of the distribution ofwhich  frequency cutoff is still~1/R, as seen from Eq6).
increases alkR—0 and leads to an essentially frequency- The original motivation for constructing the dynamical
independent response fgR<w<1/R. A less significant ef- model came from observations in a nonrandomly frustrated
fect of R is to alter the exponent of the power law in this spin system whose phenomenology is remarkably similar to
frequency range. structural glassef8]. Simulations of this system indicated a

The results from a complete numerical analysis of @y. free-energy surface with an overall curvature, and the van-
are shown in Fig. 2. It is clear from these results that there isshing of this curvature was accompanied by the appearance
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of broken ergodicity and “aging’[8]. The dynamics was our model, the spectrum crosses over from being pure Debye
effectively one dimensional, with the shear strain playing theat large curvatures to one with three distinct regimes. The
role of ¢. This frustrated spin system, can, therefore, beasymptotic, high-frequency power law is characterized by an
viewed as a microscopic realization of the dynamical modePxponent approaching zero as the curvature approaches zero.
presented here, and could provide the connection betwedpur analysis also suggests that the relaxation spectra of spin
our simple toy model and the dynamics of real glasses. glasses. and structu_ral gllasses can be Qescrlbed by th_e same
In conclusion, we have demonstrated that the basic feddnderlying model with different correlations in the distribu-
tures of the frequency-dependent response near a glass trdffn of valleys.
sition can be understood on the basis of a multivalleyed free- The authors would like to acknowledge the hospitality of
energy surface with an overall curvature, which goes to zergTP, Santa Barbara, where a major portion of this work was
at the glass transition. This is reminiscent of models whergerformed. This work has been partially supported by NSF
the glass transition is associated with an instab[lit§]. In  Grant No. NSF-DMR-9520923.
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